
A Feasible Estimator for Linear Models with
Multi-Way Fixed Effects*

Sergio Correia
Duke University

March 2016

Preliminary Version

Abstract

I propose a feasible and computationally efficient estimator of linear models with multiple
levels of fixed effects. First, I show that solving the two–way fixed effects model is equivalent
to solving a linear system on a weighted graph, and apply recent advances in spectral graph
theory to obtain a nearly–linear time estimator (Kelner et al, 2013). Second, I embed this es-
timator into an improved version of the generalized within–estimator of Guimarães and Por-
tugal (2010) and Gaure (2013), replacing their projections with symmetric ones amenable to
conjugate gradient acceleration, guaranteeingmonotonic convergence. The proposed estima-
tor has the fastest known asymptotic running time, and performs particularly well with large
datasets and high–dimensional fixed effects. Morever, by combining insights from graph
theory, it opens the door to further improvements on the estimation and inference of models
with multi–way fixed effects.
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1 Introduction

The emergence of large–scale administrative and private sector datasets has made linear
models with large sets of fixed effects commonplace in applied economic research (Einav and
Levin 2014). The reason is twofold. First, the scale of these datasets allows for flexible model
parameterizations, where—for instance—age covariates are replacedwith age fixed effects. Sec-
ond, these datasets are often structured as panels where observations correspond to multiple
economic units simultaneously. Examples include employers and employees (Abowd, Kra-
marz, and Margolis 1999), employers, employees and job titles (Carneiro, Guimarães, and Por-
tugal 2012), students and teachers (Rockoff 2004), schools, grades and subjects (Chetty, Fried-
man, and Rockoff 2014) CEOs and firms (Bertrand and Schoar 2003), exporters and importers
(Head and Mayer 2014), and so on. In these settings, including multiple levels of fixed effects
allows researchers to control for unobserved heterogeneity specific to each individual or group,
which could otherwise preclude causal inference due to omitted variable biases (Gormley and
Matsa 2014).

The traditional approach to estimate these models—apply the within transformation with
respect to the fixed effect with more categories and to add one dummy variable for each cat-
egory of all subsequent fixed effects (Wooldridge 2010)—is unfeasible with large datasets or
if there is more than one set of fixed effects with many categories. For instance, the dataset
employed by Carneiro, Guimarães, and Portugal (2012) comprises a total of 31.6 million ob-
servations, with 6.4 million individuals, 624 thousand firms, and 115 thousand occupations.
Just storing the required indicator matrices would require 23.4 terabytes of memory, 91 times
the total memory of the largest NBER computer server available (as of 2015). Alternative ap-
proaches either only work in very specific setups, such as strongly balanced panels (Baltagi
2008), or—as described by Gormley and Matsa (2014)—are inconsistent.

To address this limitation, there have been multiple efforts in recent years to provide a fea-
sible and computationally efficient estimator that allows for multiple levels of fixed effects. The
first such estimator, Abowd, Creecy, and Kramarz (2002), used the conjugate gradient method
with a diagonal preconditioner to construct a practical solver for two levels of fixed effects.
However, its convergence can be quite poor (Koutis, Miller, and Peng 2012) if the graph that
underlies the fixed effects is poorly connected.1 Subsequently, Guimarães and Portugal (2010)
and Gaure (2013a) constructed an elegant estimator by combining the method of alternating
projections with the Frisch–Waugh–Lovell theorem. This estimator allows for more than two
levels of fixed effects, but suffers from slow convergence rates (Gaure 2015). In particular, con-
vergence rates can be shown to be arbitrarily slow (Bauschke et al. 2003), meaning that numer-

1In particular, conjugate Gradient has an asymptotic runtime of𝒪(𝜅 log 𝜖−1) where 𝜅 is the relative condition
number (the ratio of the largest to the smallest eigenvalue) of the full-rank version of the matrix. See Golub and
Van Loan (2013) and Spielman (2010) for a more detailed discussion of the topic.
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ical convergence can take an arbitrarily large number of iterations, a particularly troublesome
fact given the large datasets that are more likely to require these methods. As a solution, these
methods apply acceleration techniques that often speed up the results significantly, but that
depending on the problem can make convergence even slower (Hernández-Ramos, Escalante,
and Raydan 2011). Other estimators are also of limited applicability: they are either limited to
only one high–dimensional fixed effect (Cornelissen 2008; Somaini and Wolak 2015; Mittag
2015), or arrive at consistent but potentially very inefficient estimators (the spell fixed effects
discussed Andrews, Schank, and Upward 2006).2

This paper has two central contributions. First, it shows how the solution of the two–way
fixed effects model is equivalent to that of a linear system on a graph Laplacian matrix. By
doing so, it allows the application of a new class of combinatorial algorithms that have an un-
precedented nearly–linear running time. Moreover, it leverages the link with graph theory to
apply additional techniques such as simplifications onto a 3–core graph. Second, this paper
solves the main shortcomings of the multi–way fixed effects estimator of Guimarães and Por-
tugal (2010) and Gaure (2013a), by replacing their projections with symmetric ones, which are
then combined with a conjugate gradient acceleration.

Achieving a computationally efficient estimator is important for reasons well beyond OLS:

1. Thanks to the Frisch–Waugh–Lovell theorem, this estimator can be trivially extended
to other linear models such as two–stage least squares, limited-information maximum
likelihood, and two–step linear GMM.

2. It can be used as a building block for nonlinear models. Existing implementations in-
clude the two–way fixed effects Poisson regression of Guimaraes (2014), interactive fixed
effects (Bai 2009), iterated and continuously updated GMM, and spillover models (Ar-
cidiacono et al. 2012).

3. Inference with bootstrapping and jacknife resampling can be vastly speed up, making
these approaches feasible with many fixed effects (see however the warning of Cattaneo,
Jansson, and Newey 2015).

Therefore, the advances proposed in this paper have a wide range of benefits across many
fields and methods.

2On the other hand, two promising alternatives are multi–grid methods (see Golub and Van Loan 2013 for an
introduction) and the LSMR solver of Fong and Saunders (2011), applied to the fixed effects problem by Gomez
(2016). Although more empirical studies are required to assess their performance, both can be improved by
combining them with techniques discussed in this paper, such as focusing on the two–core problem or applying
the RCM algorithm.
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2 Setup

We are interested in �̂�, the OLS estimator of 𝜷 in a model of the form

𝐲 = 𝐗𝜷+ 𝐃𝜶+ 𝜺

where 𝐲 is an outcome vector of length 𝑛, 𝐗 is an 𝑛×𝑘 matrix of covariates,𝐃 is an 𝑛×𝑔 matrix
of dummy variables, and 𝜺 is an unobserved error term. The dummymatrix𝐃 represents fixed
effects across𝐹 dimensions, so it has a block representation𝐃 = [𝐃1 𝐃2 ⋯ 𝐃𝐹 ]. The number
of levels (categories, groups) for the f-th dimension is 𝑔𝑓 , so 𝑔 = ∑𝐹

𝑓=1 𝑔𝑓 . If a fixed effects
has many categories that increase with the sample size (𝑔𝑓 ∝ 𝑛), it is a “highly–dimensional
fixed effect” (Guimarães and Portugal 2010).

For instance, in a matched employer–employee dataset, a model could include individual,
firm, and time fixed effects (𝑓 = 3). If there are 100,000 individuals, 50,000 firms and 10
years, then the total number of categories 𝑔 would be 150,010, with the individual and time
fixed effects being highly dimensional.

To obtain �̂�, I exploit the insight of Guimarães and Portugal (2010) and apply the Frisch–
Waugh–Lovell theorem (Frisch and Waugh 1933; Lovell 1963). This theorem implies that the
least squares estimates �̂� can be recovered by first regressing each variable against all the fixed
effects, and then regressing the residuals of these variables. It thus allows us to divide and
conquer the larger problem by focusing on smaller systems.

More formally, let 𝐏𝐃 = 𝐃(𝐃′𝐃)−1𝐃′ be the projectionmatrix with respect to𝐃 and𝐌𝐃 =
𝐈 − 𝐏𝐃 the corresponding annihilator or residual–maker matrix. The partialled–out vectors
̃𝐲 = 𝐌𝐃𝐲 and �̃� = 𝐌𝐃𝐗 are the residuals of 𝐲 and 𝐗 with respect to the fixed effects. Then the

two–part theorem states that3

1. �̂� = (�̃�′�̃�)−1�̃�′ ̃𝐲
2. ̂𝜺 ≡ 𝐲− 𝐗�̂�+ 𝐃�̂� = ̃𝐲− �̃��̂�

Note that with 𝑓 = 1 this reduces to the textbook within–transformation, and the operator
𝐌𝐃 will just subtract groupmeans. Also notice that this approach can be extended beyondOLS,
to any setup where versions of FWL exist, such as instrumental variables and linear GMM.

Now, the remaining step is to obtain the OLS residuals of a model of the form 𝐲 = 𝐃𝜶+ 𝜺
for 𝑘 + 1 variables. In terms of normal equations, it is equivalent4 to solving the linear system

3Proof: First, note that 𝐌𝐃 is idempotent, 𝐌𝐃𝐃 = 0, 𝐌𝐃 ̂𝜺 = ̂𝜺, and from the normal equations, 𝐗′ ̂𝜺 = 0.
Premultiply 𝐲 = 𝐗�̂� + 𝐃�̂� + ̂𝜺 by 𝐗′𝐌𝐃. Then, replace and invert ∎. For the second part, premultiply ̂𝜺 by 𝐌𝐃
and replace ∎.

4For 𝑓 > 1, 𝐃′𝐃 is not full rank, so the equivalence actually requires some convention on how full rank is
achieved. For instance, the last category of each set of fixed effects can be dropped, or the mean of each set of
fixed effects can be normalized to zero. Nevertheless, �̂� always leads to the same residuals independently on the
normalization chosen.
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(𝐃′𝐃)�̂� = (𝐃′𝐲) (1)

3 Two-Way Fixed Effects and Graph Laplacians

With two levels of fixed effects, the matrix 𝐷′𝐷 = [𝑤𝑖𝑗] studied in equation (1) then
belongs to the class of symmetric diagonally dominant matrices (SDD), as it is both symmetric
and its diagonal elements dominate the sum of its off–diagonal ones (𝑤𝑖𝑖 ≥ ∑𝑗≠𝑖 |𝑤𝑖𝑗| ∀𝑖)5.

This class of matrices is interesting because it can be reduced to Laplacian matrices of the
form 𝐋𝐱 = 𝐛 through standard reduction techniques.6 In turn, Laplacians systems have re-
cently acquired prominence as they can be solved in nearly–linear time, in contrast with previ-
ous algorithms, such as direct solvers that only run in 𝒪(𝑛2.3727) time. Thanks to this break-
through, researchers have been able to improve multiple fundamental algorithms in graph
theory and numerical optimizations (see Spielman 2010; Teng 2010 for a review of its applica-
tions).

Nearly–linear time Laplacian solvers were first proposed by Spielman and Teng (2004),
who built upon the insight of Vaidya (1991) that suggesting that good preconditioners of Lapla-
cian systems could be the certain Laplacians corresponding to subgraphs of the original sys-
tem. The importance of the Spielman and Teng work cannot be understated, as in the words
of Kelner et al. (2013a), it was a “technical tour–de–force that required multiple innovations
in spectral and combinatorial graph theory, graph algorithms, and computational linear al-
gebra” and included “the invention of spectral sparsification and ultra–sparsifiers, better and
faster constructions of low–stretch spanning trees, and efficient local clustering algorithms”.
This work was later divided into three three papers (Spielman and Teng 2011; Spielman and
Teng 2013; Spielman and Teng 2014), each of which prompted new extensive areas of research.
Subsequently, several authors have simplified and improved their solver (most notably Koutis,
Miller, and Peng 2010; Michael B. Cohen et al. 2014; Michael B Cohen, Kyng, et al. 2014;
Michael B Cohen, Miller, et al. 2014; Kelner et al. 2013a; Kelner et al. 2013b; Lee and Sid-
ford 2013; Castelli Aleardi, Nolin, and Ovsjanikov 2015). The current fastest Laplacian solver
is the one of (Michael B. Cohen et al. 2014), who achieve a solver that achieves a solution
with relative error 𝜖 in time 𝒪(𝑚 log1/2 𝑛 log log𝑐 𝑛𝑙𝑜𝑔(1/𝜖)), where 𝑚 denotes the number of
non–zero entries in the Laplacian matrix 𝐋 and 𝑛 the size of the matrix. Ignoring the polylog-
arithmic terms, this running time is then nearly ̃𝒪(𝑚 log1/2 𝑛) (following convention, I use ̃𝒪

5Proof: 𝑤𝑖𝑖 denotes the number of observations where the fixed effect 𝑖 appeared. 𝑤𝑖𝑗 denotes the number
of observations where the fixed effects 𝑖 and 𝑗 appeared. Thus, by construction, 𝑤𝑖𝑖 = 𝑤𝑖𝑗 and the condition
holds.

6See Appendix A of Kelner et al. (2013a) for details on how to apply the reduction on an SDD matrix.
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when excluding polylogarithm and error terms).
That said, the solver discussed in this paper is mostly based on Kelner et al. (2013b), who

propose a very simple and numerically stable solver that runs in𝒪(𝑚 log2 𝑔 log log 𝑛𝑙𝑜𝑔(1/𝜖))
time7, or ̃𝒪(𝑚 log2 𝑛) time. This solver can be accelerated to ̃𝒪(𝑚 log3/2 𝑛) thanks to the vari-
ant of accelerated coordinate descent proposed by Lee and Sidford (2013). Further, the tree
constructions of Castelli Aleardi, Nolin, and Ovsjanikov (2015) and Michael B Cohen, Miller,
et al. (2014) can be used to further improve its performance, although their combined time
complexity has not been analyzed.

3.1 Definitions

Let8 𝐋𝐯 = 𝝌 be a graph Laplacian system where 𝐋 is the 𝑔 × 𝑔 matrix that represents a
weighted undirected graph 𝐺 = (𝑉 , 𝐸, 𝑤) where 𝑉 represents the set of vertices or nodes, 𝐸
represents the set of edges or lines, and 𝑤(𝑒) > 0 assigns a positive weight to each edge. Let
the number of vertices be 𝑔 = |𝑉 | and the number of edges 𝑚 = |𝐸|. Similarly, denote the
edge weights 𝑤(𝑒) as the conductance of an edge (𝑒 = (𝑎, 𝑏)) and its reciprocal 𝑟𝑒 ∶= 1/𝑤𝑒 is
the resistance of such edge. Further, we will fix the edges so for two connected vertices (𝑢, 𝑣),
either (𝑢, 𝑣) ∈ 𝐸 or (𝑣, 𝑢) ∈ 𝐸. Finally, the vertex weights will be 𝑤(𝑎) = ∑(𝑎,𝑢)∈𝐸 𝑤(𝑎, 𝑢).

Define the incidence matrix 𝐁 ∈ ℝ𝐸×𝑉 :

𝐁(𝑎,𝑏),𝑐 =
⎧{
⎨{⎩

1 𝑎 = 𝑐
−1 𝑏 = 𝑐
0 otherwise

� (2)

The resistance matrix 𝐑 ∈ ℝ𝐸×𝐸:

𝐑𝑒1,𝑒2
= { 𝑟(𝑒) 𝑒 = 𝑒1 = 𝑒2

0 otherwise
� (3)

The Laplacian matrix 𝐋 ∈ ℝ𝑉 ×𝑉 :

𝐋𝑎,𝑏 =
⎧{
⎨{⎩

𝑤(𝑎) 𝑎 = 𝑏
−𝑤(𝑎, 𝑏) (𝑎, 𝑏) ∈ 𝐸

0 otherwise

� (4)

As we can see in figure 1, the Laplacian is a full representation of both the structure of the
fixed effects problem, as well as of the underlying graph.

7This paper estimates the running time in the unit–cost RAM model, which uses harsher assumptions on the
speed of computations that most closely resemble that of modern computers

8This section closely follows the notation and definitions of Kelner et al. (2013b).
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Indiv. Firm y
1 4 0.49
1 5 −1.41
2 4 −0.20
2 6 2.11
2 6 0.45
2 7 −0.32
3 7 0.76

(a) Dataset
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(b) Laplacian System
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(c) Bipartite Graph (individuals: red circles, firms: blue
squares)

Figure 1: Alternative Representations of the Fixed Effects

These figures illustrate how the fixed effects structure of a dataset can be represented as a Laplacian
matrix, and therefore, as a weighted graph.
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Given a vector 𝐟 ∈ ℝ (a flow vector across edges), and an edge 𝑒 = (𝑎, 𝑏), I follow the
convention of setting 𝐟(𝑎, 𝑏) = −𝐟(𝑏, 𝑎), so 𝑓 can be interpreted as sending a flow 𝐟(𝑎, 𝑏)
from 𝑎 to 𝑏, or equivalently, a flow −𝐟(𝑎, 𝑏) from 𝑏 to 𝑎. Then, the following claims follow (see
Kelner et al. 2013a, sec. 2 for proofs):

1. [𝐁′𝐟]𝑎 = ∑(𝑏,𝑎)∈𝐸 𝐟(𝑏, 𝑎) − ∑(𝑎,𝑏)∈𝐸 𝐟(𝑎, 𝑏) (net flow in or out of each vertex; if the
value is zero the flow is a circulation)

2. 𝐋 = 𝐁′𝐑−1𝐁
3. [𝐁𝐱](𝑎,𝑏) = 𝑥(𝑎) − 𝑥(𝑏)
4. 𝐱′𝐋𝐱 = 2∑(𝑎,𝑏)∈𝐸 (𝑥(𝑎) − 𝑥(𝑏))2/𝑟(𝑎,𝑏) (the quadratic form of the Laplacian can be

interpreted as the potential energy of an electric flow)

3.2 Reduction of the Normal Equations into a Graph Laplacian

In our setting, the vertices of the graphs are the set of fixed effects, the edges are the pairs
of fixed effects that share the same observations, and the weights are the sum of observations
(or weights, in the econometric sense) that two pairs of fixed effects share.

To reduce the normal equation (𝐃′𝐃)�̂� = (𝐃′𝐲) into a graph Laplacian, we only need to
slightly alter the model definition:

The equation
𝐲 = 𝐃𝜶+ 𝜺

can be specialized for 𝑓 = 2:
𝐲 = 𝐃1𝜶1 + 𝐃2𝜶2 + 𝜺

Now, change the signs of the second set of fixed effects:

𝐲 = 𝐃1𝜶1 − 𝐃2(−𝜶2) + 𝜺 = 𝐃1𝜶1 + �̃�2�̃�2 + 𝜺

Given this transformation, the matrix 𝐃′𝐃 will then have positive values in its diagonal and
negative in its off–diagonal elements, with each row and column adding up to zero ∎.

With this simple transformation, we can then proceed to apply the graph–teoretical tools
that will compose our solver.

3.3 Outline of the Solver

The Laplacian solver has four steps:

1. Pruning: iteratively remove all vertices of degree 1, and then all vertices of degree 2
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2. Reordering: apply the reverse Cuthill–McKee algorithm (RCM) to reorder the Lapla-
cian and reduce its bandwidth. This also returns the number of disconnected subgraphs
in the graph.

3. Build a tree: For each disconnected subgraphs, build a low–stretch spanning tree (LSST)
4. Solve an electric flow problem: Select a starting flow that is feasible on the LSST. Then,

iterate 𝐾 times; for each iteration randomly augment the LSST with an additional edge,
and adjust the flow to make the Kirchoff ’s Potential Law (KPL) hold. Then, recover the
fixed effects from the optimal flows.

Step 1 is the Greedy Elimination algorithm discussed by Koutis, Miller, and Peng (2010).
Step 2 follows Pedroche Sánchez et al. (2012a) and addresses the cache locality concerns dis-
cussed in the benchmark papers ofHoske et al. (2015) and Boman, Deweese, andGilbert (2015).
Steps 3 to 5 are part of the Dual Randomized Kaczmarz (DRK) solver of Kelner et al. (2013b).
These are discussed in more detail below.

3.4 Graph Pruning into a 3–core

For simplicity, supposewe are solving amodelwithCEOandfirmfixed effects, with a graph
described as in figure 2. If a firm only had one CEO through the sample, then it’s associated
vertex has a degree of 1. In this case, we can remove all the observations corresponding to this
firm, solve the remaining system of equations, and then subsequently recover the fixed effect
of the deleted firm.

To see why, note that in these cases the system has a triangular structure, so the normal
equation can be made to hold independently of the value of the fixed effect of the single CEO
that worked at that firm in the sample.

After removing the degree–1 vertices, we proceed to greedily remove all the degree-2 ver-
tices. Thus, if vertex 𝑎 neighbors vertex 𝑏 and 𝑐, it will be removed, together with the associated
edges, and a new edge will be created directly between 𝑏 and 𝑐. Note that the specifics of the
method are described in Algorithm 3 of Koutis, Miller, and Peng (2010).

Importantly, this method can be applied in other preexisting solvers independently of the
other steps. By doing so, it addresses some of the worst–case scenarios of implementations
such as Guimarães and Portugal (2010), Gaure (2013b) and Gomez (2016).

3.5 Reordering through the RCMAlgorithm

One empirical problem of the Dual Randomized Kaczmarz, which Hoske et al. (2015)
and Boman, Deweese, and Gilbert (2015) discuss, is that its implementation requires access to
many noncontiguous memory addresses, which leads to a problem known in computer sci-
ence as cache misses, which might dramatically decrease the speed of the solver. As a solution,
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CEO
Firm

Figure 2: Graph of CEO–Firm Connections
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I implement the reverse Cuthill–McKee algorithm (RCM) applied to the Laplacian matrix, as
proposed by Pedroche Sánchez et al. (2012a) and illustrated in Pedroche Sánchez et al. (2012b).
This algorithm reduces the bandwidth of thematrix, increasing the likelihood that its elements
are contiguous in memory. Further, once this algorithm is applied, it is trivial to compute the
number of disconnected subgraphs, an input required for the next steps.

3.6 Building a Low–Stretch–Spanning Tree

A spanning tree 𝑇 = (𝑉 , 𝐸𝑇 , 𝑤𝑇 ) is a subgraph of 𝐺 = (𝑉 , 𝐸, 𝑤) that shares the same
vertices, but that has exactly one possible path between any two nodes (if the graph 𝐺 is dis-
connected, we work on each subgraph separately). Alternatively, it can be described as a graph
that has no cycles (i.e. there is no path leaving a vertex that can arrive back at the same vertex
without using an edge more than once).

The reason we are interested in trees with linear systems is solving them takes only 𝒪(𝑛)
time, as they can be solved either with the graph pruning method described above (or more
generally with Cholesky factorization). Thus, they can in general be used as preconditioners of
any system (including conjugate gradient solvers) as they are relatively easy to solve but might
have spectral properties similar to the original graph.

Building a spanning tree can be done efficiently with a greedy algorithm such as Kruskal’s
(Cormen et al. 2009). However, the choice of the tree has a large effect on the speed on the
subsequent solver, so Spielman and Teng (2011) propose a special type of tree, known as a low–
stretch spanning tree. For each edge 𝑒 = (𝑎, 𝑏) ∈ 𝐸, they define the stretch of the edge with
respect to the tree 𝑇 as the relative cost of traversing the tree to reach 𝑏 from 𝑎 through the tree
with respect to the cost of traversing it directly. Further, they find systems with minimizing
the stretch of a tree also reduces the number of iterations required for convergence. However,
in contrast to algorithms such as Kruskal’s, it is not trivial to find a fast method to build a LSST
(see Abraham and Neiman 2014 for a discussion).

The fastest known algorithm to build a LSST is by Abraham and Neiman (2012), building
upon Spielman and Teng (2011). However, as discussed by Papp (2014), the benefits of using
a LSST might not be worth it on average, specially in comparison with breadth-first-search
methods such as Kruskal’s. As a solution, Castelli Aleardi, Nolin, and Ovsjanikov (2015) and
Michael B Cohen, Miller, et al. (2014) propose modifications to LSSTs that achieve better em-
pirical performance (Hoske et al. 2015 also find that LSST often perform worst that several
alternatives)
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3.7 Solving the Electrical Flow Problem

Given a spanning tree, the next step of our estimator consists in solving the dual problem
of solving the Laplacian system with the dual solver of Kelner et al. (2013b).

A vector flow 𝐟 ∈ ℝ𝐸 has an energy of 𝝃(𝑓) ∶= 𝐟′𝐑𝐟 = ||𝐟||2𝐑. Additionally, this flow is
feasible with respect to an energy demand at each vertex 𝝌 ∈ ℝ𝑉 if it meets the demand so
𝐁′𝐟 = 𝝌.

For this to happen, the demand of the system must add up to zero (otherwise the flow does
not transmit all the energy it receives or viceversa). The practical implications of this is that
we must first normalize our variables so they add up to zero for each disconnected graph. This
is equivalent to demeaning the variables, and is also desirable because it abstracts from the
problem of dropping a particular fixed effect category, or assigning the constant to one of the
two sets of fixed effects.

Following Kelner et al. (2013b), we will focus on the following dual problem to the primal
system 𝐋𝐯 = 𝝌:

min
𝐟∈ℝ𝐸∶𝐁′𝐟

𝝃(𝑓) (5)

Denote 𝛿(𝑎, 𝑏) = 𝐯(𝑎) − 𝐯(𝑏) be the voltage protential across the edge (𝑎, 𝑏). Also denote
a circulation as a cycle across a graph. From the KKT conditions to the problem, we can see
that an analogue of Ohm’s Law holds: the optimal flow 𝐟∗ is such that 𝐟∗(𝑒) = 𝛿(𝑎, 𝑏)/𝑟(𝑎, 𝑏).
Further, we can derive the optimality conditions 𝐟∗ = 𝐑−1𝐁𝐯∗ and restate them in terms of
Krichoff ’s Potential Law (KPL):

A feasible 𝐟 ∈ ℝ is optimal if and only if 𝐟′𝐑𝐜 = 0 for all circulations 𝐜 ∈ ℝ𝐸.
Given the above result, we then apply the SimpleSolver algorithm by Kelner et al. (2013b)

in Section 3.

4 Multi-Way Fixed Effects and Alternating Projections

The Method of Alternating Projections (MAP) of Von Neumann (1949) and Halperin
(1962) consists in iteratively applying a transformation across a subspace until convergence is
achieved. In our case, Guimarães and Portugal (2010) and Gaure (2013a) implement a block
version of MAP that demeans each variable across a fixed effect, obtains the residuals, and
then repeats cyclically across all fixed effects until the residuals converge to the partialled–out
variables. It has guaranteed convergence, although it can be arbitrarily slow, meaning that for
any 𝑁 > 0 we can always find a dataset of fixed size that will require at least 𝑁 iterations. As
a solution to this problem, Guimarães and Portugal (2010) and Gaure (2013a) implemented
acceleration methods (Aitken’s acceleration and a variant of steep descent, respectively) that
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on average converge faster but that as described by Hernández-Ramos, Escalante, and Raydan
(2011) have no guarantees of monotonic convergence and in fact, can perform even worst than
without accelerations if the underlying graph is poorly connected (or for 𝑓 > 2 if the angle
between subspaces is low).

Algorithm 1Method of Alternating Projections (map)
Input: vec 𝑦 ∈ ℝ𝑛 (variable); vec𝑤 ∈ ℝ𝑛+ (weights); 𝜖 ∈ ℝ+ (tolerance)
Output: ̃vec 𝑦 ∈ ℝ𝑛 (residuals)

1 repeat
2 ̃vec 𝑦 ← T(vec 𝑦, vec 𝑤) ▷ T is either Halperin, Symmetric Halperin or Cimmino
3 𝛿 ← || ̃vec 𝑦 − vec 𝑦||2 / || ̃vec 𝑦||2 ▷ Relative difference
4 vec 𝑦 ← ̃vec 𝑦
5 until 𝛿 ≤ 𝜖
6 return ̃vec 𝑦

As a solution, I present two alternative transformations to the Halperin transformation
implemented byGuimarães andPortugal (2010) andGaure (2013a). They have the advantage of
being symmetric, which allows us to apply a conjugate gradient acceleration to them, which in
turn (Hernández-Ramos, Escalante, and Raydan 2011) has monotonic convergence at a speed
much faster than previousmethods. In forthcoming benchmarks, the SymmetricMAP variant
performs faster on average, with the Cimmino transform performing relatively slow but with
more stable convergence times.

Algorithm 2Halperin Transform
Input: Regression variable vec 𝑦 ∈ ℝ𝑛; weights vec𝑤 ∈ ℝ𝑛+

1 function Halperin(vec 𝑦, vec 𝑤)
2 for 𝑑 ← 1 to 𝐷 do
3 vec 𝑦 ← vec 𝑦 − mean𝑑(vec 𝑦; vec 𝑤) ▷ Subtract the average across each category
4 end for
5 return vec 𝑦
6 end function

4.1 Solver Embedding

We can embed the Laplacian solver of the previous section into the MAP framework, by
combining any two sets of projections. For instance, if 𝑓 = 3 and we have (𝑃1, 𝑃2, 𝑃3) pro-
jections, we can group the first pair into a joint projection 𝑃12 which can be then solved by
the Laplacian solver in each iteration of this solver. Note that since the Laplacian solver pre-
computes many of its results, its performance will be much faster after the first iteration is
completed.

12



Algorithm 3 Symmetric Halperin Transform
Input: Regression variable vec 𝑦 ∈ ℝ𝑛; weights vec𝑤 ∈ ℝ𝑛+

1 function SymmetricHalperin(vec 𝑦, vec 𝑤)
2 for 𝑑 ← 1, 2, … 𝐷, 𝐷 − 1, … , 2, 1 do
3 vec 𝑦 ← vec 𝑦 − mean𝑑(vec 𝑦; vec 𝑤) ▷ Subtract the avg. across each category
4 end for
5 return vec 𝑦
6 end function

Algorithm 4 Cimmino Transform
Input: Regression variable vec 𝑦 ∈ ℝ𝑛; weights vec𝑤 ∈ ℝ𝑛+

1 function Cimmino(vec 𝑦, vec 𝑤)
2 vec 𝑧 ← 0𝑛×1
3 for 𝑑 ← 1 to 𝐷 do
4 vec 𝑧 ← vec 𝑧 + mean𝑑(vec 𝑦; vec 𝑤) ▷ N.B. parallelizable step
5 end for
6 return vec 𝑦 − vec 𝑧/𝐷
7 end function

5 Conclusion

In this paper, I have shown a method for solving a linear model with arbitrarily many fixed
effects withmany dimensions. It addresses many shortcomings of existing estimators, that had
slow convergence properties, in particular with large and complex datasets.

It can also be generalized beyond OLS models, and used as a building block for nonlin-
ear and other estimators. Further, by applying graph–theoretical tools, it can leverage existing
techniques such as the estimation of relative condition numbers, in order to assess the robust-
ness of the estimation.

Finally, a note of caution remains. This paper has not dealt with the estimation and identi-
fication of the parameters associated with the fixed effects, which is still an open problem.
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